NTN的這項技術是其“Next Generation Research Alliance Laboratories”聯合研究項目的成果,該實驗室于2017年大阪大學成立(總部位于大阪府佐田市),其將NTN的技術和大學的人工智能研究相結合。NTN開發的剩余使用壽命預測技術是通過將深度學習與貝葉斯學習相結合,并進行改進,從而提高從軸承發生剝落到軸承損壞時估計剩余使用壽命的準確性。在幾種人工智能方法中,NTN選擇了專門用于圖像處理的卷積神經網絡的深度學習方法,它可以將軸承的振動數據轉換為圖像數據以供使用,從而能夠預測軸承的損壞狀況和剩余使用壽命。此外,通過結合分層貝葉斯線性回歸建立了一個高度可靠的預測模型,該模型通過考慮軸承損傷進程中測量數據的個體差異和變化(誤差)來評估預測值的可靠性。通過考慮損傷條件,與傳統技術相比,剩余使用壽命的預測精度提高了約30%。